Why variability facilitates spinal learning.

نویسندگان

  • Matthias D Ziegler
  • Hui Zhong
  • Roland R Roy
  • V Reggie Edgerton
چکیده

Spinal Wistar Hannover rats trained to step bipedally on a treadmill with manual assistance of the hindlimbs have been shown to improve their stepping ability. Given the improvement in motor performance with practice and the ability of the spinal cord circuitry to learn to step more effectively when the mode of training allows variability, we examined why this intrinsic variability is an important factor. Intramuscular EMG electrodes were implanted to monitor and compare the patterns of activation of flexor (tibialis anterior) and extensor (soleus) muscles associated with a fixed-trajectory and assist-as-needed (AAN) step training paradigms in rats after a complete midthoracic (T8-T9) spinal cord transection. Both methods involved a robotic arm attached to each ankle of the rat to provide guidance during stepping. The fixed trajectory allowed little variance between steps, and the AAN provided guidance only when the ankle deviated a specified distance from the programmed trajectory. We hypothesized that an AAN paradigm would impose fewer disruptions of the control strategies intrinsic to the spinal locomotor circuitry compared with a fixed trajectory. Intrathecal injections of quipazine were given to each rat to facilitate stepping. Analysis confirmed that there were more corrections within a fixed-trajectory step cycle and consequently there was less coactivation of agonist and antagonist muscles during the AAN paradigm. These data suggest that some critical level of variation in the specific circuitry activated and the resulting kinematics reflect a fundamental feature of the neural control mechanisms even in a highly repetitive motor task.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Widdowson and Classroom Discourse

  Drawing on recent developments in linguistic description and applied linguistics, it can be concluded that learning a language necessitates getting to know something and being able to do something with that knowledge: competence, and performance. Structural approach to language description attaches importance to the former; communicative approach to the latter. Appropriate classroom discours...

متن کامل

Why does the central nervous system not regenerate after injury?

A major problem for neuroscientists and clinicians is why the central nervous system shows ineffective regeneration after injury. Injured peripheral nerve fibers reform their connections, whereas those in injured spinal cord never re-grow. Insights into the mechanisms for repair and restoration of function after spinal cord injury have been obtained by experiments showing that injured nerve cel...

متن کامل

Why does the central nervous system not regenerate after injury?

A major problem for neuroscientists and clinicians is why the central nervous system shows ineffective regeneration after injury. Injured peripheral nerve fibers reform their connections, whereas those in injured spinal cord never re-grow. Insights into the mechanisms for repair and restoration of function after spinal cord injury have been obtained by experiments showing that injured nerve cel...

متن کامل

GSDLAB TECHNICAL REPORT Why CART Works for Variability-Aware Performance Prediction? An Empirical Study on Performance Distributions

This report presents follow-up work for our previous technical report “Variability-Aware Performance Modeling: A Statistical Learning Approach" (GSDLAB-TR-2012-08-18). We try to give evidence why our approach, based on a statisticallearning technique called Classification And Regression Trees (CART), works for variability-aware performance prediction. To this end, we conduct a comparative analy...

متن کامل

BDNF and learning: Evidence that instrumental training promotes learning within the spinal cord by up-regulating BDNF expression.

We have previously shown that the spinal cord is capable of learning a sensorimotor task in the absence of supraspinal input. Given the action of brain-derived neurotrophic factor (BDNF) on hippocampal learning, the current studies examined the role of BDNF in spinal learning. BDNF is a strong synaptic facilitator and, in association with other molecular signals (e.g. cAMP-response element bind...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 30 32  شماره 

صفحات  -

تاریخ انتشار 2010